What is the Analyse Decomposition?
Theodog tensors 23,2000 201000
The left E. F. be smooth vector bundle
of rank k over a smooth oriented
Rights particle decompart M
Analyse E and F lave metrics
The left P:
$$C^{-}(E) \rightarrow C^{-}(E)$$
 be and sections
the left particle defined opporton.
Then Kov(P) $\subset C^{-}(E)$ is finite-dim
and $C^{-}(E) = ker(P) \odot Im(P^{-1})$
(Then Kov(P) $\subset C^{-}(E)$ is finite-dim
and $C^{-}(E) = ker(P) \odot Im(P^{-1})$
(What is a PDO?
3) What is a PDO?
3) What is the franch adjoint?
 $\cong Ci: \Omega^{+}(M) \rightarrow \Omega^{+}(M)$
 $\Delta = dS + Sd = (d+S)^{+}$ where $S = Ci^{+} d^{+} d^{+}$
 $= ci^{+} d^{+} d^{+}$ ($M = C^{-}(C)^{+} d^{+} d^{+}$
 $= ci^{+} d^{+} d^{+}$ ($M = C^{-}(C)^{+} d^{+} d^{+}$
 $= ci^{+} d^{+} d^{+}$ ($M = C^{-}(C)^{+} d^{+} d^{+}$

then we my that P is elliptic.
ex compute the symbol in local coordinates
$$: \sigma_{d}(3) = -7\pi\pi$$

and $\sigma_{1}(3) = -(1 - 1 - 1)^{2} \approx = -111^{2}\pi$
 $\sigma_{d}(3) = -1131^{2}T is involute in hermon $3\pi \neq 0$
so Δ is elliptic
Lef Found deliptic
 $p^{-1} \in C^{\infty}(F) \rightarrow C^{\infty}(F)$ is a PDO defined by
 $CP^{\mu}, \beta \geq_{1} = < \alpha, P^{\mu} \beta \geq_{2}$ $b^{\mu} \in C^{\infty}(F)$
 $f^{\mu} = \int_{0}^{1} \sigma_{1} \pi^{\mu} \beta = \int_{0}^{1} \sigma_{1} \pi^{\mu}$$