What is the stodge Decomposition?
Tuesday, January 19, 2016 3:11 PM
The Let E, F be smooth vector fondle of rank k over a smooth oriented Riemannian manifold compat M
Assume E and F have metivies
The let $P: C^{\infty}(E) \rightarrow C^{\infty}(F)$ be an c^{∞} sections elliptic paction inferential operator.
Then K or $(P) \subset C^{\infty}(E)$ is finte-dim
and $C^{\infty}(E)=\operatorname{Ker}(P) \oplus \operatorname{Im}\left(P^{*}\right)$

(1) What is a PDO?
(2) What is an elliptic PDO?
(3) What is the formal adjoint?
ex $\Delta: \Omega^{k}(M) \rightarrow \Omega^{k}(M)$
$\Delta=d \delta+\delta d=(d+\delta)^{2}$ where $\delta=(-1)^{k} *^{-1} d *$

$$
\begin{aligned}
& =(-1)^{k}(-1)^{(k-1)(n+k-1)} * d * \\
& =-* d *(\text { if } n \text { even })
\end{aligned}
$$

Def A map A from $C^{\infty}(E)$ to $C^{\infty}(F)$ is a PDO

* Vouge Stor

$$
\Omega^{k}(M) \rightarrow \Omega^{n-k}(M)
$$

locally, $\omega_{1}, \cdots, \omega_{n}$ is an oriented basis of $\Omega^{1}(u)$, then $*\left(\omega_{i, 1} \wedge \wedge \omega_{i, ~}\right)=\omega_{j, \wedge} \wedge \omega_{j-k}$ where $\omega_{i 1} \wedge \cdots \wedge \omega_{i_{k}} \wedge \omega_{j_{1}} \wedge \wedge \wedge \omega_{j_{n k}}$ is an orientation form if locally it con be written as a matrix of partial derivatives $\left[a^{\sum a_{i} \frac{\partial_{n}^{|\alpha|}}{\partial_{n}^{n} \cdot \partial_{x}^{\prime \prime}}}\right]$
Remark the highest term is not changed
Def $\sigma_{p} \in \Gamma\left(\right.$ glom $\left.\left(\pi^{*}(E), \pi^{*}(F)\right)\right)$ where $\pi: 0^{*} M \rightarrow M$
is defined by $\sigma_{p}(\xi) \alpha=P\left(\frac{f^{k}}{k!} \alpha\right) \pi(\xi)$ where $\left.d f(\pi(\xi))=\right\}$

$$
f(\pi(\xi))=0
$$

Symbol of P
In local coordinates, the symbol of $f=\sum a_{\alpha} \frac{\partial^{\alpha}}{\partial x_{1}^{\alpha} \ldots x_{n}^{\alpha}}$

$$
=\sum a_{\alpha} \xi^{\alpha_{1}} \cdot \xi^{\alpha_{n}}
$$

Def if $\sigma_{p}(\xi) \in \Gamma($ Him $(E, F))$ is cm isomophisen for every nonjeow $\xi \in T_{T M}^{*}$

$$
\left(\xi \in \dot{T}^{*} M\right)
$$

then we ser that P is elliptic.
ex compute the symbol in local coordinates: $\sigma_{d}(\xi) \alpha=\xi \wedge \alpha$
and $\left.\tau_{\delta}\left(\xi_{x}\right)\right\}(\alpha=-\alpha(\xi, \cdots)$

$$
\sigma_{\Delta}\left(\xi_{x}\right) \alpha=(\xi \wedge-\xi L)^{2} \alpha=-\|\xi\|^{2} \alpha
$$

$\sigma_{\Delta}(\xi)=-\|\xi\|^{2} I d$ is invatutle whenever $\xi_{x} \neq 0$
so Δ is elliptic
Def Formal stoljount
$P^{*}: C^{\infty}(F) \rightarrow C^{\infty}(E)$ is a PDO defined by

$$
\begin{aligned}
& \langle P \alpha, \beta\rangle_{L^{2}}=\left\langle\alpha, P^{*} \beta\right\rangle_{L^{2}} \quad \forall \alpha \in C^{\infty}(E), \beta \in C^{\infty}(F) \\
& \prod_{\langle\alpha, \beta\rangle L^{2}}=\int_{M} \alpha \wedge * \beta=\int\langle\alpha, \beta\rangle d w t
\end{aligned}
$$

Rement This is constructed bally by integration by pants (Stokes)
Ex Claim: $\delta=d^{*}$
want $\int d \alpha \wedge * \beta=\int \alpha \wedge * \delta \beta=\int \alpha \wedge *(-1)^{k} *^{-1} d * \beta$

$$
=\int \alpha \wedge(-1)^{k} d(x \beta) \quad[\mathbb{k}=\operatorname{deg} \alpha]
$$

Note $d\left(\alpha_{\wedge} * \beta\right)=d \alpha_{\wedge} * \beta+(-1)^{k-1} \alpha \wedge d(* \beta)$

$$
=\int d \alpha \wedge * \beta
$$

Rement $(P \circ Q)^{*}=Q^{*} \circ P^{*}$

$$
\begin{aligned}
\Delta^{*} & =\left(d d^{*}+d^{*} d\right)^{*} \\
& =d d^{*}+d^{*} d \\
& =\Delta
\end{aligned}
$$

I formally self-aclioint
C $\Omega \quad \Omega^{k}(M)=\operatorname{Ker}(\Delta) \oplus \operatorname{Im}(\Delta)=\underbrace{\operatorname{Ker}(\Delta)}_{\operatorname{Kerd}^{\prime}(\Delta) \oplus \operatorname{Im}(d) \oplus \operatorname{Im}\left(d^{*}\right)}$
Punchline Each $\alpha \in H_{d R}^{*}(M)$ can be uniquely represented
by an clement of the $\operatorname{Ker}(\Delta)$
Conversely avery $\alpha \in K_{\text {er }}(\Delta)$ is closed α heme represents $\in H_{a R}$
Basic Application: $H_{\text {dR }}^{*}(M)$ is finite dim

